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Abstract

Animal tracking through Argos satellite telemetry has enormous potential to test hypotheses
in animal behavior, evolutionary ecology, or conservation biology. Yet the applicability of
this technique cannot be fully assessed because no clear picture exists as to the conditions
influencing the accuracy of Argos locations. Latitude, type of environment, and transmitter
movement are among the main candidate factors affecting accuracy. A posteriori data filter-
ing can remove “bad” locations, but again testing is still needed to refine filters. First, we
evaluate experimentally the accuracy of Argos locations in a polar terrestrial environment
(Nunavut, Canada), with both static and mobile transmitters transported by humans and
coupled to GPS transmitters. We report static errors among the lowest published. However,
the 68™ error percentiles of mobile transmitters were 1.7 to 3.8 times greater than those of
static transmitters. Second, we test how different filtering methods influence the quality of
Argos location datasets. Accuracy of location datasets was best improved when filtering in
locations of the best classes (LC3 and 2), while the Douglas Argos filter and a homemade
speed filter yielded similar performance while retaining more locations. All filters effectively
reduced the 68™ error percentiles. Finally, we assess how location error impacted, at six
spatial scales, two common estimators of home-range size (a proxy of animal space use
behavior synthetizing movements), the minimum convex polygon and the fixed kernel esti-
mator. Location error led to a sometimes dramatic overestimation of home-range size,
especially at very local scales. We conclude that Argos telemetry is appropriate to study
medium-size terrestrial animals in polar environments, but recommend that location errors
are always measured and evaluated against research hypotheses, and that data are always
filtered before analysis. How movement speed of transmitters affects location error needs
additional research.
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Introduction

Technological improvements now allow researchers to acquire huge amounts of data describ-
ing the geographical location of wild animals, whether these travel on land, in the water, or in
the air [1]. This has allowed detailed descriptions and sophisticated hypothesis testing on the
movements [2], behavior [3], migration [4], and habitat selection and habitat use [5] of hun-
dreds of animal species. Argos satellite telemetry (http://www.argos-system.org) is one of the
major telemetry technologies used in the past 30 years [6, 7]. Created in 1986, the Argos system
calculates the location of a Platform Transmitter Terminal (PTT) by using the Doppler effect
on transmission frequency between a message sent by the PTT deployed on an animal and an
orbiting satellite [8, 9]. The Argos system is widely used because observers can easily retrieve
positions from their office in near real-time, a great advantage over all techniques relying on
intensive field work (e.g., VHF telemetry) or on the retrieval of data stored in the deployed
transmitters (e.g., many Global Positioning System (GPS) transmitters) [1, 7].

One potential limitation of the Argos system, however, lies in its lower accuracy compared
to the GPS [10, 11], to the point where the error associated with Argos locations can be too
large to allow a detailed interpretation of animal movement [11]. CLS, the company operating
the Argos system [9], attributes the position of a PTT to one of seven Location Classes (LC).
Attribution is based on the geometrical conditions of the satellite pass at the time of receiving
messages, and on the stability of transmitter frequency [9]. When > 4 messages are received,
an error estimate can be calculated and the location is assigned a LC based on its estimated
error radius. The upper bound for each LC is then 250 m (LC3), 500 m (LC2), 1500 m (LC1),
or > 1500 m (LCO). With < 4 messages, auxiliary locations LCA (3 messages) and LCB (1 or 2
messages) can be calculated, but no error estimate is provided [9]. While some studies have
suggested that LCA and LC1 errors can sometimes be similar [12, 13], errors associated to LCA
and LCB can still reach a few kilometers [7, 14]. Finally, LCZ indicates invalid locations [9]. An
important final note is that the bounding values for the LC3 to LCO are not absolute bounds.
According to CLS, locations rather have a 68% probability of being between the bounding val-
ues (i.e. in a normal distribution, 68.27% of the values lie within one standard deviation of the
mean).

Assessing correctly the accuracy of Argos locations is important because distinguishing bio-
logical variability from technological inaccuracy and sampling error is key to test biological
hypotheses [15, 16]. For example, location accuracy can strongly affect estimated speed of
travel for migrating animals [17]. Behavioral patterns can also be hard to detect if location
errors are greater than one order of magnitude of the maximum observed step length of move-
ment [15]. This problem has been approached in two ways, either through quantification of
measurement error or through filtering of the locations most likely to be erroneous. The error
can be evaluated experimentally by placing PTTs at a known location, be it on the ground [17,
18, 19] or on a moving animal [20-22]. Devices providing both GPS and Argos locations can
also help evaluating the error associated to Argos locations by considering the GPS positions as
true [11, 23]. Unfortunately, transmitters using both GPS and Argos are often too heavy to be
deployed on small animals over the long term [24]. The number and the accuracy of Argos
locations can be influenced by latitude, animal's behavior (including movement speed [25]) or
number of satellites in the sky [18, 26], while topography and canopy do not seem to seriously
impact Argos telemetry performance [27]. This slightly differs from findings obtained with
GPS telemetry [28], where accuracy was influenced by canopy closure [29-31], topography
[32, 33], fix interval [33], device orientation [34, 35] and model [29, 30], tree height/density
[36, 37], and daily phase and season [34].
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Filtering of Argos locations can be done in several ways. The easiest approach consists in
only keeping locations from the best location classes (usually LC3, LC2 and LC1) [38-40].
However, in most studies, a low proportion of locations is found in these classes, resulting in a
drastic reduction of the number of data points available for analyses [12, 41-43]. Moreover, as
explained above, some location errors can be much larger than the bounding value specified
for a given LC [12, 44]. An alternative approach thus uses destructive filters to remove improb-
able locations, based for example on movement speed, angle of movement or spatial redun-
dancy between consecutive locations [8, 43, 45, 46]. Still another approach relies on state-space
models that use the estimated sampling error as part of the estimation process [11, 16, 47-49].
While more complex to implement, the latter approach does improve methods of investigation
on animal behavior [47, 50-52].

The increasing speed at which new miniaturized battery-PTT units are developed creates a
strong need to refine our understanding of the accuracy of Argos locations (defined here as the
mean distance error from a known true position; not to be confused with precision, i.e. the area
within which a given percentage of locations are likely to be found [17]). Animals of small size
moving over small areas are indeed much more numerous than those of big size moving over
large areas, so that hardware miniaturization opens many new research opportunities. This
also increases the importance of assessing correctly the accuracy of Argos locations. In addi-
tion, Argos accuracy in terrestrial environments is still relatively undocumented compared to
marine environments [25, 53]. Besides, while it was suggested that movement might impact
negatively the performance of Argos telemetry [25], to our knowledge this was not quantified
experimentally.

Many studies have focused on contexts where signal quality can be seriously degraded
because animals spend most of their time underwater [13, 54, 55] or often change their flight
altitude [53]. Here we rather focus on ground conditions where signal quality and thus location
accuracy should be maximal, and we investigate the extent to which detailed biological ques-
tions could be answered in these conditions.

Most filtering methods were created for datasets containing lots of bad quality locations, but
their ability to improve good quality datasets has never been tested [7, 11, 51]. Polar regions
offer exceptional conditions for Argos telemetry, considering that the Argos satellites have a
polar orbit and that satellite coverage increases with latitude [26], resulting in a higher, optimal
fix rate obtained every day. These conditions allow for an important proportion of good quality
locations [56]. We answered three objectives. First, we evaluated experimentally the error asso-
ciated to Argos locations in a polar terrestrial environment, with both static and mobile trans-
mitters. Second, we used different filtering methods to test how they improved the quality of
Argos locations. Finally, we assessed how location error impacted the estimation of home-
range size, since this metric is commonly used to quantify animal space use [57], efficiently
synthetizes animal movement [58], and initiates most habitat selection analyses at several
scales [59]. Since there are debates as to the pros and cons of various home-range size estima-
tors [60, 61], we assessed the effect of Argos location error on two common estimators, the
95% minimum convex polygon (MCP) and the 95% fixed kernel density estimator.

Materials and methods
Study area

We worked during July 2012 in the southern plain of Bylot Island (73°N, 80°0) which is part
of Sirmilik National Park, Nunavut, Canada (S1 Fig). The area is characterized by flat lowland
and upland plateaus intersected by valleys [62]. The tundra vegetation is composed mostly of
low shrubs, grasses, mosses and lichens, with no forest cover.
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Ethics statement

All necessary permits were obtained for the described field work on Bylot Island, which is
within Sirmilik National Park of Canada (Parks Canada permit #SIR-2011-8212, amended 7
May 2012).

Materials

We used twelve collars weighing < 115 g each and bearing Argos Platform Transmitter Termi-
nals (PTT) (Model Kiwisat 203, Sirtrack Ltd, Hawkes Bay, New Zealand). The PTTs had a rep-
etition rate of 60 seconds and transmitted daily between 14:00 and 17:00 GMT. To get
reference locations of the Argos PTTs, each of them was randomly coupled to one of three GPS
receivers (Garmin GPS76) as explained below under Static tests. The inaccuracy associated
with GPS locations is negligible compared to that associated with Argos locations (Cargnelutti
etal. [63] reported a median error < 10m for GPS units used to track wildlife in open areas),
thus we considered the GPS locations as true locations.

Static tests

Our first objective (part 1) consisted in assessing Argos accuracy on static PTTs (static tests) in
three classes of topography defined by the percentage of obstructed sky: 0-33% (hilltop), 33—
66% (moderate relief) and 66-100% (incised valley). Two replicates were done for the first two
classes and only one for the last, due to the rarity of incised valleys in our study area (S1 Fig).
For each test, we attached 3 Argos PTTs on wooden stakes located less than 1 m from each
other. Each PTT was located about 30 cm above the ground, with its antenna pointing towards
the sky. The PTTs were left at the same spot for 6 days. During the first 3 days, they were
restarted daily between 12:00 and 13:00 GMT, allowing them to transmit continuously in the
following 24 hours after each start. During the last 3 days, they were not restarted daily and
thus emitted only from 14:00 and 17:00 GMT. At each site, one GPS receiver was placed on the
ground close to the collars. The GPS receivers were programmed to record and store a location
every 30 seconds. They were left for a full day or until the batteries were discharged. The coor-
dinates of the reference location for each test site were calculated as the average coordinates of
all GPS locations for this site.

Mobile tests

Our first objective (part 2) consisted in assessing Argos accuracy on mobile PTTs (mobile
tests) during 20 sessions when we walked in the tundra with 3 Argos PTTs and one GPS
receiver attached on our backpack. Each mobile session lasted > 4 hours. The Argos PTTs
were started at the beginning of each session and the GPS was set to record a location every 20
seconds. The tracks performed on 15 sessions were loops originating and ending at our camp,
whereas 5 other tracks reflected one-way trips to camp after we were dropped by a helicopter a
few kilometers away. Our average walking speed was 3.4 + 0.4 km.h ™.

To determine a reference location for each Argos location obtained during a mobile test, we
looked for the two GPS locations that were obtained just before (GPS1) and after (GPS2) the
Argos location, and then calculated through linear interpolation a reference GPS location at
the time of the Argos location. The timestamp provided by Argos for a given location is the
average time between the first and the last message used to calculate this location (D. Stakem,
Service Argos, pers. comm.), and the average duration of an Argos satellite pass is ca. 10 min.
We therefore calculated a reference GPS location only when the time difference between GPS1
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and GPS2 was <10 minutes, as gaps in our GPS tracks sometimes happened due to poor recep-
tion or battery failure.

For both static and mobile tests, we defined the error associated to an Argos location as the
Euclidean distance between that location and the associated reference GPS location (Fig 1,
objective 1).

Data filtering

To answer our second objective, we filtered our mobile dataset in five ways (Fig 1, objective 2)
and assessed each time the resulting error distribution. The first three filters consisted in keep-
ing only the LC3, only the LC3 and LC2 (LC32), and only the LC3, LC2 and LC1 (LC321). The
fourth filter was the Douglas Argos filter (hereafter referred to as DAF) [45], which is freely
available on the Movebank website (www.movebank.org). Movebank is a free online infra-
structure that allows researchers to archive, manage, analyze and share animal tracking data
[64], and the DAF is now widely used by wildlife biologists. DAF is a destructive filter that flags

Static tests Mobile tests

GPS Argos GPS Argos
locations locations locations locations

Objective 1 :
Error evaluation
A A
. . Objective 2 :
Static error Mobile error Data filtering
(long. and lat.) (long. and lat.)
L LC3
Objective 3:
Effect of location error LC32
on home range size
T Lc321
M M
L 3 DAF
Static Mobile Radius X Douglas Argos filter
Simulated LC32 static Simulated LC32 mobile Simulated LC32 mobile
error applied to error applied to error applied to random
random points from random points from points in circular areas HSF
mobile GPS tracks mobile GPS tracks of radius X Homemade speed filter
B C D A
l

Fig 1. Linkages between research objectives and data structure. White boxes represent raw data collected in the field while conducting tests with static
and mobile transmitters. Accuracy of Argos locations (objective 1) was evaluated through comparisons between GPS and Argos locations. The effects of five
data filtering procedures on the quality of the resulting datasets were compared during objective 2, using Argos locations obtained during mobile tests as
initial dataset. Objective 3 assessed in four ways (A to D) the effect of location error on two estimators of home range size (see methods for details). Note that
we did not manage to fully harmonize the logical flow of the study with the reading order of the figure, so that objective 3A appears to the right of 3D. Black
lines and arrows identify data sources used to address each objective.

doi:10.1371/journal.pone.0141999.g001
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implausible locations based on criteria such as spatial redundancy, movement rates and angles.
We filtered our data based on distance, angle and rate of travel between location (Filter
method = DAR, or Distance Angle Rate) and kept all location classes (keep_lc = G). Since we
worked at a local scale, we kept all near-consecutive locations within 2 km (maxredun = 2) and
considered that the maximum sustainable speed for a human walking in the tundra was 8 km.
h™ (minrate = 8) and that our tracks were circuitous (ratecoef = 5). These conservative parame-
ters maximized the number of locations retained. Fifth, we applied a homemade speed filter
(HSF; S1 File) previously developed and used in our lab [40] and were interested in testing its
reliability and efficiency in comparison with the DAF. This destructive filter considers a loca-
tion to be valid only when one of the two following conditions is met: 1- the speed between
that location and the previous one is inferior to a cruise speed determined by the user; 2- the
speed between that location and the previous one is inferior to a maximum acceleration speed
determined by the user and the duration between the two locations is inferior to the maximum
time during which the animal can sustain this maximum speed (also determined by the user).
When none of these conditions is met, the last of the two consecutive locations is removed. We
used as parameters a cruise speed of 6 km.h™', a maximum acceleration speed of 8 km.h™', and
a maximum acceleration duration of 20 min.

Assessment of the effect of location error on home-range size estimation

To answer our third objective, we evaluated how Argos error impacts home-range size estima-
tion using three consecutive approaches. First, we evaluated the impact of data filtering on
home-range size (Fig 1, objective 3A). To this end, we calculated home-range size for the 20
mobile sessions using 1- the unfiltered Argos data (that is, Argos data of all location classes;
this corresponds to the Argos locations box of the Mobile tests section in Fig 1), 2- only the
LC3 and LC2 locations (LC32), 3- only the LC3, LC2 and LC1 locations (LC321), 4- the DAF-
filtered datasets, and 5- the HSF-filtered datasets. We did not calculate home-range size using
only the LC3 locations because sample sizes were too small during some mobile sessions.

Second, we evaluated the impact of static (Fig 1, objective 3B) and mobile (Fig 1, objective
3C) Argos error on home-range size. To evaluate the impact of static errors, we applied simu-
lated static errors to our mobile tracks. To that end, we generated the error distributions in lati-
tude and longitude for the LC3 and LC2 locations gathered during the static tests. We then
applied random Argos errors from these distributions to random locations from each of the 20
GPS tracks generated during our mobile sessions. The number of dummy Argos locations gen-
erated per GPS track was the same as the number of LC32 Argos locations obtained in the
field, with the same proportion of locations in each location class. To evaluate the impact of
mobile errors, we repeated the same procedure except that we applied Argos errors measured
for the LC32 locations during the mobile tests.

Third, we investigated how Argos error influences home-range size estimation when loca-
tions are randomly distributed within a circular area. This third approach was needed because
the home ranges generated by the tracks obtained during our mobile sessions were likely of a
much more elongated shape than those of territorial animals. We thus generated artificial ran-
dom locations uniformly distributed within circles of different radii (250 m, 500 m, 750 m, 1
000 m, 2 500 m and 5 000 m; Fig 1, objective 3D), thereby investigating how Argos error influ-
ences home-range size estimations at different spatial scales. We then applied errors from the
mobile LC3 and LC2 distributions to each of these artificial random locations. To be consistent
with the simulations done in objectives 3B and 3C, and to allow comparisons between objec-
tives 3B-C-D, we performed 20 simulations for each radius (one for each mobile Argos track),
and we generated the same number of artificial locations, with the same proportion of locations
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in each location class, as in the respective mobile sessions of the LC32 dataset. We repeated all
simulations (static, mobile and circular areas) 100 times.

Minimum convex polygon versus fixed kernel

To assess the effect of Argos location error on the 95% minimum convex polygon (MCP) and the
95% fixed kernel density estimators, we compared each estimate of home-range size generated
from Argos data to the size of a reference home range. For the filtered datasets and the static and
mobile simulations, reference home ranges were generated from the GPS tracks for each session.
For the circular area simulations, the reference datasets were the artificial random locations uni-
formly distributed in circles of varying radius. As there were always more GPS locations than
Argos locations, reference home ranges were estimated by randomly selecting in the reference
datasets as many points as there were Argos locations. We repeated this process 1000 times for
each Argos home-range size estimation. For each iteration and for each method of home-range
size estimation (MCP vs. kernel), we calculated the size of the reference and Argos home range,
the ratio of the Argos home-range to the reference home-range (ratio Argos to Reference), and
the proportion of Argos locations found within the reference home-range.

To ensure that kernel estimates would be comparable across all scenarios, we used a grid
with a fixed cell size of 250 m and a fixed smoothing parameter value of 850 m. This smoothing
parameter value is the average value estimated for all filtering treatments of the smoothing
parameters from the ad hoc method for the Argos and reference home range as defined and
implemented in the package “adehabitat” for the R software [65]. Kernel areas were estimated
as the 95% contours of the utilization distributions.

Statistical analyses

To evaluate the impact of topography on the error of static locations (objective 1), we used a
linear mixed model with the error as the dependant variable, the visibility and the location clas-
ses as fixed effects, and PTTs as random effects to account for potential pseudoreplication. We
also used linear mixed models to evaluate the impact of the interaction between test type (static
or mobile) and LC on the error. PTTs were again included as random effects. All errors were
previously log-transformed to meet the normality requirement of the analysis. Filtered data
(objective 2) were explored with descriptive statistics only. We used linear mixed models with
the mobile sessions as random factor to determine the influence of treatment on home-range
size estimation of simulated and filtered mobile data (objective 3).

Unless otherwise indicated, all data are expressed as mean * standard deviation. We set the
significance level at 0.05 for all tests and performed all statistical analyses in R 3.0.2 (R Core
Team, 2013). Data are available from the Dryad Digital Repository [66].

Results
Static tests

Static tests generated 2,106 Argos locations, with an average of 3.2 + 1.2 locations per hour per
PTT, and 86.2% of these locations being in LC3, LC2 or LC1 (Table 1, Panels A-F in S2 Fig).
One LCZ location was removed from the dataset prior to analyses. We estimated the true posi-
tion of PTTs from 1,331 to 2,917 GPS locations, depending on the site. The measured 68"
error percentiles were slightly greater for LC3 and LC2 locations than the values provided by
CLS (Table 1), but values for the other location classes fell within the provided range. Con-
trarily to our expectations, the 68" error percentile in LCA was 33% smaller than the LC1 one.
Longitude errors tented to be greater than latitude errors for LC321, but both errors varied
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Table 1. Comparison between static and mobile errors for all Argos location classes.

LC N

Static 3 964
2 622
1 232
0 45
A 126
B 117
Total 2106
Mobile 3 267
2 438
1 327
0 161
A 27
B 55
Total 1275

Proportion of
total
(%)

45.8

29.5

11.0

2.1

6.0

5.6

100

20.94

34.35

25.65

12.63

212

4.31

100

Mean Longitudinal Latitudinal mean Median Estimated 68" Error percentiles
error * SD mean error * SD error * SD error error percentiles
(m) (m) (m) (m) (m) 68" (m) 90" (m)
259 + 208 171 £ 165 162 + 166 213 <250 298 469
456 + 359 306 + 301 283 + 270 357 250 < <500 517 953
773 + 607 540 + 464 471 + 486 588 500 < < 1500 920 1613
5330 + 17085 4152 + 12852 3123 + 11321 1454 > 1500 2475 8253
640 + 866 397 + 483 419 £ 770 397 NA 618 1128
1195 + 2143 694 + 1371 831+ 1723 478 NA 787 2580
557 + 2656 379 + 1992 348 + 1771 299 440 978
556 + 409 369 + 310 347 + 353 470 <250 643 1007
822 + 726 533 + 551 525 + 583 624 250 < <500 887 1593
2007 + 1946 1359 + 1593 1253 + 1365 1430 500 < < 1500 2124 3933
6270 £ 9402 4601 + 8328 3757 + 4805 3845 > 1500 5780 12850
1988 + 2166 1350 + 1750 1144 + 1575 954 NA 2351 4853
5028 + 16059 3058 + 12025 3502 + 10819 1233 NA 2184 8367
1964 + 5189 1350 + 4191 1224 + 3146 864 1433 4105

Columns show the number and proportion of locations obtained for each location class (LC), the mean error, the mean longitudinal and latitudinal errors,
the median error, the 68™ error percentiles as estimated by CLS [9], and the 68™ and 90™ error percentiles calculated from Argos locations obtained
during static (n = 7) and mobile tests (n = 20) from Argos Platform Terminal Transmitters deployed simultaneously with GPS receivers on Bylot Island,
Nunavut, Canada in July 2012.

doi:10.1371/journal.pone.0141999.t001

greatly within each LC (Table 1). Our linear mixed model showed that visibility had a signifi-
cant impact on static error (F,, 31.72) = 16.72, p < 0.001) and that error in each LC was
impacted (F (10, 2086.04) = 3.40, p < 0.001). Comparing least squared means in the model showed
that while error did not differ significantly between the 0-33% and 33-66% obstructed sky clas-
ses (t(13,5) = 1.22, p = 0.24), the 66-100% obstructed sky class had a significantly lower error
than the 0-33% (t(2054) = 5.89, p < 0.001) and the 33-66% obstructed sky classes (t( 3y = 4.51,
p < 0.001).The 68™ error percentiles were respectively 27% and 30% smaller over all LCs for
the 66-100% obstructed sky class compared to the two other classes.

Mobile tests

Mobile tests generated 1,275 Argos locations, with an average of 64 + 20 locations obtained per
session (Table 1, Panels G-L in S2 Fig). The proportion of locations of LC3, LC2 or LC1 was
still large (80.9%), but the proportion of LC3 decreased by half compared to static tests (20.9%
vs. 45.8%) while the proportion of LC1 more than doubled (25.6% vs. 11.0%, Table 1). Mobile
errors were significantly greater than static errors for all LCs (linear mixed model, F;, 411.02) =
105.14, p < 0.001 and the interaction between movement and location classes was also signifi-
cant (Fs, 3362.83) = 3.35, p = 0.005), and the 68™ error percentiles were 1.7 to 3.8 times greater
than their static counterparts.

Data filtering

The DAF and HSF removed respectively 34% and 38.5% of locations, with LC 1, 0 and B being
most severely filtered out (Table 2). All filtering methods led to an effective reduction of the
68" error percentiles (Fig 2). The examination of the error distributions shows that the DAF
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Table 2. Comparison of the performance of different filtering methods.

LC

W > o =N

Total

Average no. of loc. per session * SD

Mean error (m * SD)

Raw Lc3 LC32 LC321 DAF HSF
267 267 267 267 226 (84.6%) 200 (74.9%)
438 0 438 438 343 (78.3%) 310 (70.8%)
327 0 0 327 189 (57.8%) 174 (53.2%)
161 0 0 0 47 (29.2%) 50 (31.1%)
27 0 0 0 19 (70.4%) 17 (63%)
55 0 0 0 18 (32.7%) 33 (60%)
1275 267 (20.9%) 705 (55.3%) 1032 (80.9%) 842 (66.0%) 784 (61.5%)
64 + 20 13+ 10 35+ 19 52 17 42117 39+ 15
1964 + 5189 556 + 409 721+ 638 1129 + 1355 895 + 820 915 + 964

Columns show the number of Argos locations obtained in each location class (LC), as well as the number of Argos locations retained by the Douglas
Argos Filter (DAF) and a Homemade Speed Filter (HSF) applied to data obtained during 20 mobile tests from Argos Platform Terminal Transmitters
deployed on Bylot Island, Nunavut, Canada in July 2012. The percentage of locations retained by each filter within each LC is shown in parentheses.

doi:10.1371/journal.pone.0141999.t002

and the HSF performed very similarly. However, keeping only the LC3 or LC32 locations was
the most efficient way of reducing location error (Fig 2).

Assessment of the effect of location error on home-range size estimation

Average home-range sizes calculated from GPS locations were 6.9 + 3.1 km?* with the MCP
estimator and 31.5 + 4.6 km” with the kernel estimator (Fig 3A). The four filtering methods
resulted in significantly improved estimates of home-range size, as evidenced by the fact that
Argos-generated home-range sizes were closer to GPS-generated home-range sizes after the
data were filtered (Fig 3A). The lowest size ratios (Fig 3B) and the highest proportions of Argos
locations falling in the GPS home range (Fig 3C) were obtained when keeping only locations of
LC3 and LC2. Keeping only LC32 indeed decreased home-range size by 74% with the MCP
and 49% with the kernel compared to unfiltered data, and the proportion of locations in the
reference home range increased by 5% (MCP) and 12% (kernel). Although they did not provide
the best results, the Douglas Argos filter and our homemade speed filter led to parameter esti-
mates that did not significantly differ from the LC32 ones (S1 Table).

Size ratios of home ranges and the proportion of locations found in the reference home
range calculated for simulated Argos locations with mobile errors were not statistically differ-
ent from those calculated with the LC32 locations (Fig 3B and 3C, S1 Table), except for the pro-
portion or locations in the reference home range calculated with the MCP (Fig 3C, S1 Table).
However, both size ratios and the proportion of locations in reference home ranges calculated
for the static dataset differed significantly from the LC32 and mobile datasets, both when using
MCP and kernel (S1 Table). As predicted, the static dataset gave consistently estimates of better
quality than its counterpart based on mobile error, with mobile home-range size ratios being
49% (MCP) and 18% (kernel) higher than static home-range size ratios, and the proportion of
locations in the reference home range being the highest for both methods.

The performance of estimations for locations randomly generated in circular areas of vari-
ous sizes consistently improved as the radius of the circle increased (Fig 4B and 4C). While for
a 250-m radius, home-range sizes were overestimated by 2,250% and 50% respectively with
MCP and kernel estimators, the overestimations were reduced to 27% and 17% for a 2,500-m
radius and to 9% and 6% for a 5,000-m radius. The proportion of locations in the reference
home range was ca. 98% with the kernel estimation for radii < 1000 m but started to decrease
from radii > 2500 m (Fig 4C). In contrast, this proportion increased steadily with the radius
for the MCP estimations.
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Fig 2. Probability density distributions of the error associated with Argos locations. Locations were
obtained during static tests (Static, n = 2,106) and mobile tests (Mobile, n = 1,275). The latter category is
decomposed into LC3 locations (n = 267), LC3 + LC2 locations (LC32, n = 705), LC3 + LC2 + LC1 locations
(LC321, n=1,032), locations filtered with the Douglas Argos Filter (DAF, n = 842) and locations filtered with a
Homemade Speed Filter (HSF, n = 784). The diamonds indicate the 68th percentile of data. Data were
obtained from Argos Platform Terminal Transmitters deployed simultaneously with GPS receivers on Bylot
Island, Nunavut, Canada in July 2012.

doi:10.1371/journal.pone.0141999.9002

Influence of the home-range size estimator on the home-range size
estimation

Home-range size estimates were always larger with the kernel estimation method than with the
MCP (Figs 3 and 4), especially so for the reference home ranges (Fig 3). The kernel estimator
also generated lower size ratios between the reference home ranges and the Argos ones, and
generated a higher proportion of locations in the reference home range (Figs 3 and 4).

Discussion
Accuracy of Argos locations during static tests

Our static experiments yielded high quality data containing a very high proportion of accurate
locations (LC3). To our knowledge, only Sauder et al. [27], working in the northwest of the
United States, reported a location set of similar accuracy. Topographic ruggedness improved
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the accuracy in each location class, a phenomenon that had already been observed [27]. This
gain might reflect the screening out of bad quality locations generated when satellites were at a
low angle above the horizon [26]. Sauder et al. [27] attributed the high quality of their datasets
to recent improvements in satellite technology, PTT technology, and data processing algo-
rithms. We further suggest that the geographical area where PTTs are active might influence
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the accuracy of reported locations. Indeed, Boyd and Brightsmith [24] recently obtained loca-
tions of poor accuracy in Peru, even when using the Kalman filter, introduced in 2011 by CLS.
Increased satellite coverage at high latitudes might thus have a strong influence on Argos per-
formance [26]. Other factors, such as PTT power or electromagnetic interference, might also
affect Argos location quality differentially according to where the study is conducted [17, 21,
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53]. We observed a tendency for a greater error in longitude than in latitude (likely because of
the polar orbit of satellites), in good agreement with findings from other studies [23, 24].

Influence of PTT movement on Argos location error

More than 80% of the locations of our moving PTTs were in LC3, LC2 or LC1, which contrasts
with previous reports from Vincent et al. [12] (29,8%), Britten et al. [20] (11%), and Hazel [14]
(12.5%). Yet movement did strongly affect the accuracy of Argos locations, since error esti-
mates were almost twice as large in mobile tests than in static tests, whatever the location class.
This occurred even though our movement speed (a human pace in the tundra) was relatively
low, and confirms that PTT movement is one of the dominant sources of inaccuracy for Argos
telemetry [25].

Our simulations showed that the size ratios of home ranges were at least 20% higher for
mobile than for static errors. This suggests that a static evaluation of Argos error is not suffi-
cient to assess the accuracy of Argos locations, as is sometimes suggested in the literature [67].
We recommend always evaluating Argos accuracy in conditions similar to those encountered
by PTTs deployed on animals, for example through the use of captive animals [12] or through
a mix of Argos and GPS technology [23].

Effect of data filtering on the quality of Argos datasets

The lowest home-range sizes and the highest proportions of locations in reference home ranges
were obtained when retaining only high quality location classes (LC3 and LC2), not when
applying one of our data filters. This is not surprising, since we only tested destructive filters,
which are meant to remove the less accurate locations. Moreover, destructive filters usually
remove few good quality locations, mostly by screening out locations from LCO, A and B [46,
55]. However, keeping only locations from LC3 and LC2 resulted in a more reduced dataset
than when applying other filtering methods. Keeping only LC3 and LC2 locations might also
bias the evaluation of animal space use in favor of some specific areas, such as those where ani-
mals rest and thus do not move [39]. In addition, since the error estimates provided by CLS
represent only the 68" percentile of the error, some locations can still have an important asso-
ciated error, even in LC3 [8]. Since no significant difference was found between home-range
size estimations based on the LC32 data, Douglas Argos-filter and homemade filter datasets,
we suggest that filtering full datasets is more appropriate than using only LC32 locations,
whenever possible.

We only tested the efficiency of destructive filters in this study, so the filtered datasets could
only be as accurate as the best quality locations. It would be interesting to see how more com-
plex approaches, like state-space models, might improve even more data quality and home-
range size estimates [23, 47].

Influence of home-range delineation method on home-range size
estimation

Kernel home ranges had consistently lower size ratios and a higher proportion of locations in
the reference home range than MCPs. However, home-range size estimates were always greater
with the kernel estimator, which might seem counter-intuitive since the MCP method is
known to overestimate home-range size [61]. Our choice of smoothing factor might explain
this result, since we used for all our home-range size estimations the average value of the
smoothing parameters estimated for all filtering treatments and the reference datasets. By
including datasets that contained Argos errors when choosing our smoothing parameter, we
might have obtained a larger value than if we only used the reference datasets, and that might
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have resulted in the overestimation of our reference home ranges [68, 69]. Moreover, we used
the ad hoc method defined in the adehabitat R package [65] to select our smoothing parameter,
which might also lead to bandwidth overestimation [68]. This could explain why the size ratios
were lower and why the reference home ranges included a more important proportion of loca-
tions. Spatial scale did not influence greatly our kernel results, even though the proportion of
locations found in home ranges started to decrease in circles with a 5000-m radius, which
might be the result of the smoothing factor becoming too small, thus resulting in an underesti-
mation of the reference home ranges [69]. On the contrary, the MCP method depended much
more on the spatial scale, with only a very low proportion of locations found in reference home
ranges and a very high size ratio with a 250-m radius. This is not surprising considering that
the MCP is sensitive to outliers and is thus more prone to overestimation if the error is impor-
tant compared to the spatial scale [70]. The size ratios decreased and the proportion of loca-
tions in reference home ranges increased as the spatial scale increased, reflecting that, as the
spatial scale becomes sufficiently large compared to the measurement error, the error becomes
diluted and biological signals can be detected [15]. In the end, even though a better estimation
of the kernel bandwidth might be preferable, the choice of the home-range size estimator did
not influence our decision when comparing the efficiency of the filters, as both methods yielded
comparable results.

Conclusion

Our methodological study, performed in a terrestrial polar region, yielded a high number of
good quality locations with error estimates close to what CLS is advertising. However, PTT
movement greatly impacted location accuracy, even at low speeds, and a next step should be to
quantify how PTT speed influences accuracy of Argos locations. Data filtering and the assess-
ment of location accuracy in a mobile setup should be two prerequisites before analyzing any
Argos dataset in a biological context. We showed that applying the Douglas-Argos filter or a
basic speed filter provide similar home range size estimates than keeping only locations falling
in the LC3 and LC2 Argos location classes, while retaining more locations, and should there-
fore be advocated. It is noteworthy that Argos inaccuracy will always lead to an overestimation
of home-range size. The importance of this overestimation will be larger for small home ranges.
Yet our results suggest that, considering the quality of the data we obtained, Argos telemetry
has a high benefit/cost ratio when studying medium-size terrestrial animals in polar
environments.

Supporting Information

S1 Fig. Maps showing the location of the study area (top-left) and its general topography
(top-right). The two enlarged areas (bottom panels) show the 5 sites used for static tests in
three classes of topography (hilltop, moderate relief, incised valley) as well as 20 trips (15 loops
+ 5 one-way trips) used for mobile tests.

(PNG)

$2 Fig. GPS and Argos locations obtained for 6 representative static tests (2 tests for each
class of topography; Panels A-F) and 6 representative mobile tests (4 loops and 2 one-way
trip; Panels G-L) used to evaluate Argos telemetry accuracy in the High Arctic. Panel titles
identify each test and indicate, for static tests, the percentage of Argos locations not seen
because they fall out of the graph boundaries. Raw data are available at http://dx.doi.org/10.
5061/dryad.bt72k for all 15 static tests (2 sites with 3 PTTs replicated once + 1 site with 3 PTTS
without replication) and all 60 mobile tests (15 loops with 3 PTTs and 5 one-way trips with 3
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Supporting Information

S1 Fig. Maps showing the location of the study area (top-left) and its general topography
(top-right). The two enlarged areas (bottom panels) show the 5 sites used for static tests in

three classes of topography (hilltop, moderate relief, incised valley) as well as 20 trips (15 loops
+ 5 one-way trips) used for mobile tests.

(PNG)

S2 Fig. GPS and Argos locations obtained for 6 representative static tests (2 tests for each

class of topography; Panels A-F) and 6 representative mobile tests (4 loops and 2 one-way

trip; Panels G-L) used to evaluate Argos telemetry accuracy in the High Arctic. Panel titles
identify each test and indicate, for static tests, the percentage of Argos locations not seen
because they fall out of the graph boundaries. Raw data are available at http://dx.doi.org/10.
5061/dryad.bt72k for all 15 static tests (2 sites with 3 PTTs replicated once + 1 site with 3 PTTS
without replication) and all 60 mobile tests (15 loops with 3 PTTs and 5 one-way trips with 3
PTTSs) performed in this study.

(PDF)

S1 File. R script of the homemade speed filter.
(TXT)

S1 Table. Differences of least squared means between the fixed factors of mixed models.
(DOCX)
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A) Static test — Hilltop — Replicate 1 — PTT 113049 (99.3%)
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B) Static test — Hilltop — Replicate 2 — PTT 113055 (96.6%)
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C) Static test — Moderate relief — Replicate 1 — PTT 113046 (95.7%)
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D) Static test — Moderate relief — Replicate 2 — PTT 113047 (98%)
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E) Static test — Incise valley — Replicate 1 — PTT 113048 (100%)
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F) Static test — Incise valley — Replicate 1 — PTT 113050 (99.2%)
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G) Mobile test — Loop — PTT 113052
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H) Mobile test — Straight — PTT 113055
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I) Mobile test — Loop — PTT 113053
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J) Mobile test — Straight — PTT 113052
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Package: ARGOS.Filter.Program

1) CleanUp.Table()

2) Redundancy.Deletion()
3) Move.Parameter()

4) Speed.Filter()

5) Position.plot()

6) Barycentre()

7) Euclidean.dist()

Script created by Tarroux, A. and Casajus, N.

HOH O H H HF HF HE HE H O HF HFHF

# Filter no 1 (CleanUp)

H% %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%% %% %% %% %% %%

# -> Deletion of recordings without localisations (<NA>)

-> Formatting of the date

-> Projection of the geographic coordinates

-> Deletion of duplicates (same localisation)

-> Deletion of geographic abberrations

H9% %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %6 %6 %6 % % % % % % % % % % % % % % % % % %
%% %% %% %% %% %%

#

# Arguments :

#

# File : Data file name, without extension

# Format : Extension of the data file

# Projection, Datum, Zone : informations for the geographic projection of coordinates

# X.range : # Longitude limits (degrees)

# Y.range : Latitude limits (degrees)

H R O

CleanUp.Table <- function(File, Format, Projection, Datum, Zone, X.range, Y.range) {
Package <- dir(.libPaths())

pos <- which(Package == "rdgal")
if (length(pos) ==0) {
stop("Please install the package 'rdgal"', "\n")

}
library(rdgal)
options(warn = -1)

# File opening



if (Format == "txt") {
Data <- read.delim(file = paste(getwd(), "/", File, ".txt", sep =
}
if (Format == "xlIs") {
pos <- which(Package == "RODBC")
if (length(pos) ==0) {
stop("Please install the package 'RODBC', "\n")
}
channel <- odbcConnectExcel(paste(getwd(), "/", File, ".xIs", sep =""))
Data <- sqlFetch(channel, sglTables(channel)[1, 3])
}
if (Format == "xlsx") {
pos <- which(Package == "RODBC")
if (length(pos) == 0) {
stop("Please install the package 'RODBC", "\n")
}
channel <- odbcConnectExcel(paste(getwd(), "/", File, ".xlsx", sep =""))
Data <- sqlFetch(channel, sqlTables(channel)[1, 3])

}

), header =T, sep="",dec=".")

# Deletion of repeated title lines
pos <- which(Data$"Platform" == "Platform")
if (length(pos) > 0) {
Data <- Data[-(which(DataS$"Platform" == "Platform"))]
}

str(Data)
# Extraction of essential fields
if (Format == "txt") {
Table <- Datal, c("Platform.ID.", "Prg.No.", "Latitude", "Longitude", "Loc..quality", "Loc..date", "Sat.", "Msg",
"SENSOR..01", "Semi.major.axis", "GDOP")]
}
if (Format == "xIs" || Format == "xIsx") {
Table <- Datal, c("Platform ID ", "Prg No#", "Latitude", "Longitude", "Loc# quality", "Loc# date", "Sat#", "Msg",
"SENSOR #01", "Semi-major axis", "GDOP")]
}
colnames(Table) <- ¢("Platform_ID", "Prg_No", "Latitude", "Longitude", "Loc_quality", "Loc_date", "Sat", "Msg"
"SENSOR_01", "Semi_major_axis", "GDOP")

# Convert as numeric
for(iinc(3,4,8,9, 10, 11)) {
Table], i] <- as.numeric(as.character(Table], i]))

}

# Deletion of recording without localisations
pos <- which(is.na(Table[, "Longitude"]))
if (length(pos) > 0) {
Table <- Table[-pos, ]
}
pos <- which(is.na(Table[, "Latitude"]))
if (length(pos) > 0) {
Table <- Table[-pos, ]



}

# Date formatting
Table[, "Loc_date"] <- as.POSIXct(strptime(Table[, "Loc_date"], "%Y/%m/%d %H:%M:%S"))

# Deletion of geographic abberrations
if (lis.null(X.range)) {
if (min(Table[, "Longitude"]) < X.range[1]) {
posX <- which(Table[, "Longitude"] < X.range[1])
Table <- Table[-posX, ]
}
if (max(Table[, "Longitude"]) > X.range[2]) {
posX <- which(Table[, "Longitude"] > X.range[2])
Table <- Table[-posX, ]
!
!
if (lis.null(Y.range)) {
if (min(Table[, "Latitude"]) < Y.range[1]) {
posY <- which(Table[, "Latitude"] < Y.range[1])
Table <- Table[-posY, ]
}
if (max(Table[, "Latitude"]) > Y.range[2]) {
posY <- which(Table[, "Latitude"] > Y.range[2])
Table <- Table[-posY, ]
}
}

rownames(Table) <- NULL

# Projection dof geographic coordinates
xy <- Table[, c("Longitude", "Latitude")]

if (Projection =="UTM") {
Xy_proj <- project(xy, c(proj = "utm", zone = Zone, datum = Datum), ellps.default = "GCS")
}
if (Projection == "AEA") {
Xy_proj <- project(xy, c(proj = "aea", lat_1 =50, lat_2 =70, lat 0=40,long 0=-96,x 0=0,y_0=0, datum =
"NAD83"))
}
Table <- as.data.frame(cbind(Table[, 1:2], Table[, 4], Table[, 3], xy_proj$x, xy_projSy, Table[, 5:11]))
colnames(Table) <- ¢("Platform_ID", "Prg_No", "Longitude", "Latitude", "Long_proj", "Lat_proj", "Loc_quality",
"Loc_date", "Sat", "Msg", "SENSOR_01", "Semi_major_axis", "GDOP")

# Calculate average SENSOR 1 moyen & deletion of duplicates
Level.ID <- levels(as.factor(as.character(TableS"Platform_ID")))

Mat_Sensor <- as.data.frame(matrix(NA, ncol = 13, nrow = 1))
colnames(Mat_Sensor) <- ¢("Platform_ID", "Prg_No", "Longitude", "Latitude", "Long_proj", "Lat_proj", "
"Loc_date", "Sat", "Msg", "SENSOR_01", "Semi_major_axis", "GDOP")

Loc_quality"

Mat_Sensor[, "Loc_date"] <- as.POSIXct(Mat_Sensor[, "Loc_date"])

for (kin 1 : length(Level.ID)) {



Tab <- Table[as.factor(Table[, "Platform_ID"]) == Level.ID[k], ]
Level.Date <- levels(as.factor(Tab$"Loc_date"))
for (iin 1 : length(Level.Date)) {
temp <- Tabl[as.factor(Tab[, "Loc_date"]) == Level.Date[i], ]
Mat_Sensor <- as.data.frame(rbind(Mat_Sensor, temp([1, ]))
Mat_Sensor[nrow(Mat_Sensor), "SENSOR_01"] <- round(mean(tempS$"SENSOR_01"), 3)
Mat_Sensor[nrow(Mat_Sensor), "Loc_date"] <- as.POSIXct(strptime(temp[1, "Loc_date"], "%Y-%m-%d %H:%M:%S"))
}
}

Mat_Sensor <- Mat_Sensor|[-1, ]
cat("\n", "Cleaning Filter: Done...", "\n", "\n")
write.table(Mat_Sensor, file = paste(File, "_CleanUp.txt", sep =""), sep = "\t", row.names = F, col.names = T)

}
# = ====== = = ====== = = Pty

#

# Filter no 2 (Redundancy)

#%%% %% %% %% % % % % %% %% % % % %% %% % % % % %% % % % % % %% % % % % % % %% % % % % % %% % % % % %% % % % % % % %% %
%% % %%%%% %% %%

# -> Deletion of pseudo-duplicates

#  <=> Different recording with a transmission interval

# below a set threshold
#
#

<=>the recording with the lowest error ellipsis or the best LC, or

the first recording (in case of equality) is saved
H% %% %% % % % % % % % % % % % % % % % % % % % % % % % % % % %% %% %% %% % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%%%%%%%%%%%%
#
# Arguments :
#
# File : Data file name, without extension. Must be the same as the one used in Cleanup.Table
# as it will use the file generated by that function
# Time.Gap : Minimum time interval between 2 recordings
#
Redundancy.Deletion <- function(File, Time.Gap) {

Data <- read.delim(file = paste(File, "_CleanUp.txt", sep =""), header =T)

i<-1
while (i < nrow(Data)) {
j<-i

vec <- NULL

while(difftime(Data[j+1, "Loc_date"], Datalj, "Loc_date"], units = "mins")[[1]] < Time.Gap
&& Datal[j+1, "Platform_ID"] == Data([j, "Platform_ID"]
&& j <= nrow(Data)-1) {

vec <- c(veg, j, j+1)
j<-j+1
if(j >= nrow(Data)) { break }

}
if (length(vec) > 0) {



vec <- as.numeric(levels(as.factor(vec)))
}
if (j>1i){
pos <- which(Data[vec, "Semi_major_axis"] == 0)
if (length(pos) > 0) {
if (length(vec[-pos]) > 0) {
Data[vec[pos], "Semi_major_axis"] <- NA
ind <- which.min(Data[vec, "Semi_major_axis"])
}else {
ind <- NULL
}
}else {
ind <- which.min(Data[vec, "Semi_major_axis"])
}
if (is.null(ind)) {
ind <- which(Data[vec, "Loc_quality"] =="3")
if (length(ind) == 0) {
ind <- which(Data[vec, "Loc_quality"] == "2")
if (length(ind) == 0) {
ind <- which(Data[vec, "Loc_quality"] =="1")
if (length(ind) == 0) {
ind <- which(Data[vec, "Loc_quality"] == "0")
if (length(ind) ==0) {
ind <- which(Data[vec, "Loc_quality"] =="A")
if (length(ind) == 0) {
ind <- which(Data[vec, "Loc_quality"] =="B")
if (length(ind) == 0) {
ind <- which(Datal[vec, "Loc_quality"] =="2")

Data <- Data[-vec[-ind[1]], ]
}

i<-i+1

if(i >= nrow(Data)) { break }
}

rownames(Data) <- NULL
cat("\n", "Redundancy Filter: Done...", "\n", "\n")
write.table(Data, file = paste(File, "_Redundancy.txt", sep =""), sep = "\t", row.names = F, col.names =T)

}
# = ====== = = ====== = = Pty

# = = ====== = = ====== = = =

Move.Parameters <- function(Data, k) {



if (Data[k, "Platform_ID"] == Data[k-1, "Platform_ID"]) {
Dist <- round(sqgrt((Data[k, "Long_proj"] - Data[k-1, "Long_proj"])*2 +
(Datalk, "Lat_proj"] - Data[k-1, "Lat_proj"])”*2) / 1000, 2)
Time <- round(difftime(Data[k, "Loc_Date"], Data[k-1, "Loc_Date"], units = "mins")[[1]], 2)
Speed <- round(60*Dist/Time, 2)
}else {
Dist <- Time <- Speed <- -9999
}
List <- list(Dist, Time, Speed)
names(List) <- c("Distance", "Duree", "Vitesse")

return(List)

#:: = = ====== =

#

# Filter no 3 (Speed)

#%%% %% %% %% % %% % % % % %% %% %% %% %% %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % %% %% %% % % % % %
%%%%%%%%%%%%

# -> Deletion of recordings with an improbable movement speed

#  <=>Two criterias of speed : cruising speed and acceleration speed

# -> Before that, recordings can also be selected depending of their location

# class (e.g. deletion of LCZ, B, A...)

H%%%%% % % %% %% % % % % % %% % % % % %% % % % % % % % % % % % % % %% % % % % % % % % % % % % % %% % % % % %% % % % % % % %
%%%%%% %% %% %%

#

# Arguments :

#

# data : Data frame. It is highly recommanded to load the data generated by Cleanup.Table
# and Redundancy.Deletion to get the good column format.

# Sel.Loc : Boolean. If TRUE, recordings are selected according to their location classes

# qual : vector of LC to keep

# Speed1 : numeric. Cruising speed threshold (km/h)

# Speed2 : numeric. Acceleration speed threshold (km/h)

# TimeSp2 : numeric. Maximum acceleration duration (min)

# Plot : Boolean. If TRUE, one graph per PTT is drawn

Speed.Filter <- function(data, Sel.Loc = F, qual = NULL, Speed1, Speed2, TimeSp2, Plot = F) {
Info.list <- data.frame()

# Sort data by PTT then by Date
data <- data[order(data[, "Platform_ID"], data[, "Loc_Date"]), ]

# Extract PTT ids
Ind <- levels(as.factor(data[, "Platform_ID"]))

# Initialize empty object (final table)
TAB <- NULL
# loop on PTTs
for (jin 1 : length(Ind)) {
# Extract data from PTT j
tab <- data[data[, "Platform_ID"] == Ind([j], ]



# Sort data by PTT then by Date

tab <- tab[order(tab[, "Loc_Date"]), ]

# Reinitialize line numbers

rownames(tab) <- NULL

# Extract different Localisation Classes

LOC <- levels(as.factor(data[, "Loc_Quality"]))

# Initialize a table with the number of deleted localisations by LC

Info <- as.data.frame(matrix(0, nrow = 3, ncol = 9))

colnames(Info) <- ¢("Ind", "Criteria", "Loc_Z", "Loc_B", "Loc_A", "Loc_0", "Loc_1", "Loc_2", "Loc_3")
Info[, "Ind"] <- rep(Ind[j], 3)

Info[, "Criteria"] <- c("Quality", "Distance", "Speed")

# If we want to keep only certain localisations (based on their quality)
if (Sel.Loc==T) {
# Initialization of an empty vector
dat <- NULL
# Loop on desired qualities
for (i in seq_along(qual)) {
# Remove from vector LOC the LC we keep
LOC <- LOC[-which(LOC == as.character(qual[i]))]
# Extract data of quality i
dat <- as.data.frame(rbind(dat, tab[tab[, "Loc_Quality"] == quall[il, 1))
}
for (k in seq_along(LOC)) {
Info[1, paste("Loc_", as.character(LOC[k]), sep ="")] <- nrow(tab[tab[, "Loc_Quality"] == LOC[k], ])
str(Info)
}
tab <- dat
# Reinitialize line numbers
rownames(tab) <- NULL
}
# Sort data by PTT then by Date
tab <- tab[order(tab[, "Loc_Date"]), ]

if (Plot) {
# Minimal and maximal longitude where the PTT j has sent a localisation
Xlim <- ¢(min(tab[, "Longitude"]), max(tab[, "Longitude"]))
# Minimal and maximal latitude where the PTT j has sent a localisation
Ylim <- c(min(tab[, "Latitude"]), max(tab][, "Latitude"]))
# New grahical window separated in 2
par(mfrow =c(1, 2))
# Graph of initial localisation of the PTT
Position.plot(tab[, c("Longitude", "Latitude")], Ind[j], Xlim, Ylim)
}

# Initialization of 3 vectors with -9999

Steplen <- DiffTim <- Speed <- rep(-9999, dim(tab)[1])
# These 3 vecteurs are added to the table

tab <- cbind(tab, StepLen, DiffTim, Speed)

# Initialization of 2 vectors (for the plot)

Col <- xy <- NULL

# Initialization of counter i



i<-2

# loop on all rows starting with row 2
while (i <= nrow(tab)) {

# bugfix

if (i==1){
tabli, "StepLen"] <- -9999
tabl[i, "DiffTim"] <- -9999
tabli, "Speed"] <- -9999
i<-i+1

}

# movement parameters between localisations i and i-1
param <- Move.Parameters(tab, i)

# Parameters are saved on line i

tabli, "StepLen"] <- paramS"Distance"

tabl[i, "DiffTim"] <- param$"Duree"

tabl[i, "Speed"] <- param$"Vitesse"

# -
# If i has a speed > cruising speed
if (tab[i, "Speed"] > Speed1) {
# And if i has a speed < acceleration speed AND the duration is <= maximal acceleration duration
if (tab[i, "Speed"] <= Speed2 && tabl[i, "DiffTim"] <= TimeSp2) {
# Check if there is only one location in the day
# row where the day of localisation i starts
beg.day <- as.numeric(rownames(tab[substr(tab[, "Loc_Date"], 1, 10) == substr(tab[i, "Loc_Date"], 1, 10), ])[1])
# If i is the first localisation of the day and the next localisation is from another day
if (beg.day == i && (tab[substr(tabli, "Loc_Date"], 1, 10) != substr(tab[i+1, "Loc_Date"], 1, 10), 1)) {

# We extract some points around i to check if this point has the greatest distance
# to the centroid of this group of points

Hoeeee
# If i is at least on the 4th row
if (i >=4) {

# If there are 3 localisations after the localisation i

if ((i + 3) <= nrow(tab)) {
# The we take the 3 localisations before and after i
vec <- seq(i-3, i+3)
# If there are not 3 localisations afteri

}else {
# we take the maximum number of localisations after (from 0 to 2)
vec <- seq(i-3, nrow(tab))

}

#If i is before the 4th row (between 2 and 3)

}else {

# If there are 3 localisations after the localisation i

if ((i + 3) <= nrow(tab)) {
# Then we take all localisations between i and the start of the day and 3 localisations after i
vec <- seq(1, i+3)
# If there are not 3 localisations after i

} else {



# we take the maximum number of localisations after (from 0 to 2)
vec <- seq(1, nrow(tab))

}
}

# We calculate the centroid of the group of point we got

Bar <- Barycentre(tab[vec, c("Longitude", "Latitude")])

# We calculate distances between each point and the centroid

Dist <- apply(tab[vec, c("Longitude", "Latitude")], 1, G = Bar, Euclidean.Dist)

# If the 1st localisation of the day has the greatest distance
if (vec[which.max(Dist)] == beg.day) {
# Save the coordinates of the deleted localisation
xy <- rbind(xy, tab[beg.day, c("Longitude", "Latitude", "Loc_Quality")])
# Deletion according to the distance to the centroid : red
Col <- ¢(Col, "red")
# Delete the localisation
tab <- tab[-beg.day, ] ; rownames(tab) <- NULL
# Counter "i" comes back to the deleted position
i <- beg.day
# Else,
}else {
# Save the coordinates of the deleted localisation
Xy <- rbind(xy, tabl[i, c("Longitude", "Latitude", "Loc_Quality")])
# Deletion according to the speed : blue
Col <- ¢(Col, "blue")
# Delete the localisation (speed too important)
tab <- tab[-i, ] ; rownames(tab) <- NULL

# And "i" stays "i"
i<-i
}
# Else,
}else {
# The localisation is kept and we go to the next one
i<-i+1
}
# If he acceleration speed AND/OF the maximal duration are not respected
}else {

# Row number where the day of localisation i starts
beg.day <- as.numeric(rownames(tab[substr(tab[, "Loc_Date"], 1, 10) == substr(tabli, "Loc_Date"], 1, 10), 1)[1])
# If i is the first localisation of the day
if (beg.day ==) {
# Save the coordinates of the deleted localisation
xy <- rbind(xy, tabl[i, c("Longitude", "Latitude", "Loc_Quality")])
# Deletion according to the speed : blue
Col <- ¢(Col, "blue")
# Delete the localisation (bad speed)
tab <- tab[-i, ] ; rownames(tab) <- NULL

# And "i" stays "i"
i<-i

# If i is not the first localisation of the day
# We need to check that this localisation is "good"



# We extract some points around i to check if this point has the greatest distance
# to the centroid of this group of points

# If there is a maximum of 3 localisations between the start of the day and i
if ((i - beg.day) <=3) {
#1fiis at least on the 4th row
if (i >=4){
# If there are 3 localisations after the localisation i
if ((i + 3) <= nrow(tab)) {
# The we take the 3 localisations before and after i
vec<-seq(i-3,i+3)
# If there are not 3 localisations after i
}else {
# we take the maximum number of localisations after (from 0 to 2)
vec <- seq(i - 3, nrow(tab))
}
# If i is before the 4th row (between 2 and 3)
}else {
# If there are 3 localisations after the localisation i
if ((i + 3) <= nrow(tab)) {
# Then we take all localisations between i and the start of the day and 3 localisations after i
vec<-seq(1, i+ 3)
# If there are not 3 localisations after is i
}else {
# we take the maximum number of localisations after (from 0 to 2)
vec <- seq(1, nrow(tab))
}
}

# We calculate the centroid of the group of point we got

Bar <- Barycentre(tab[vec, c("Longitude", "Latitude")])

# We calculate distances between each point and the centroid

Dist <- apply(tab[vec, c("Longitude", "Latitude")], 1, G = Bar, Euclidean.Dist)

# If the 1st localisation of the day has the greatest distance
if (vec[which.max(Dist)] == beg.day) {
# Save the coordinates of the deleted localisation
Xy <- rbind(xy, tab[beg.day, c("Longitude", "Latitude", "Loc_Quality")])
# Deletion according to the distance to the centroid : red
Col <- ¢(Col, "red")
# Delete the localisation
tab <- tab[-beg.day, ] ; rownames(tab) <- NULL
# Counter "i" comes back to the deleted position
i <- beg.day
# Else,
}else {
# Save the coordinates of the deleted localisation
Xy <- rbind(xy, tabli, c("Longitude", "Latitude", "Loc_Quality")])
# Deletion according to the speed : blue
Col <- ¢(Col, "blue")
# Delete the localisation (speed too important)
tab <- tab[-i, ] ; rownames(tab) <- NULL



# And "i" stays "i"
i<-i
}
# Sii est loin de la 1ére position de la journée
}else {
# Save the coordinates of the deleted localisation
xy <- rbind(xy, tabli, c("Longitude", "Latitude", "Loc_Quality")])
# Deletion according to the speed : blue
Col <- ¢(Col, "blue")
# Delete the localisation (speed too important)
tab <- tab[-i, ] ; rownames(tab) <- NULL
# And "i" stays "i"
i<-i
}
}

}
# Else,

} else {
# Localisation is kept (speed < cruising speed)
i<-i+1

}

# We check there are still localisations

if (i > nrow(tab)) {
break
print("break")

}

}

rownames(tab) <- NULL

if (Plot) {
# Identify deleted localisations
points(xy, pch = 19, col = Col)

# Draw new positions
Position.plot(tab[, c("Longitude", "Latitude")], Ind[j], Xlim, Ylim)
}

if (lis.null(xy)) {
Ofni <- cbind(xy, Col)
for (zin 1 : nrow(Ofni)) {
pos.col <- which(colnames(Info) == paste("Loc", as.character(Ofni[z, "Loc_Quality"]), sep="_"))
if (Ofni[z, "Col"] == "blue") {
Info[3, pos.col] <- Info[3, pos.col] + 1
}else {
Info[2, pos.col] <- Info[2, pos.col] + 1
}
}

}
# Add data from new PTT below the last one

TAB <- rbind(TAB, tab)

# Add the summary table in the list
Info.list <- rbind(Info.list, Info)



}

cat("Graph informations:", "\n")

cat(" Red: Deletion of the first daily localisation", "\n")

cat(" Blue: Deletion of the localisation based on speed", "\n")

cat(" Black: Localisation kept", "\n")

cat("\n", "Deletion information:", "\n")
print(Info.list)
return(TAB)

—

Position.plot <- function(data, Ind, Xlim, Ylim) {

plot(data, pch = 19, col = "black", bty ="I", las = 2, cex.axis = 0.75,

cex.lab = 0.75, xlab = colnames(data)[1], ylab = colnames(data)[2], xlim = Xlim, ylim = Ylim)

title(main = paste("Individual", Ind))

H = =
H

Barycentre <- function(data) {

Bar.x <- mean(datal, 1])
Bar.y <- mean(datal, 2])
Bar <- c(Bar.x, Bar.y)

return(Bar)

}

#:: = = ====== = =

Euclidean.Dist <- function(X, G) {
d <- sgrt((X[1] - G[1])*2 + (X[2] - G[2])*2)

return(d)




doi:10.1371/journal.pone.0141999.s004

Table S1 : Differences of least squared means between the fixed factors of mixed models.

Size ratio Proportion in reference

MCP Kernel MCP Kernel
Raw - LC32 5.62 (<0.001) 7.57 (<0.001) -1.15(0.25)  -6.09 (<0.001)
Raw - LC321 4.71 (<0.001) 5.03 (<0.001) -1.06 (0.29) -3.65 (<0.001)
Raw - DAF 5.65 (<0.001) 6.98 (<0.001) -0.96 (0.34)  -5.08 (<0.001)
Raw - HSF 5.77 (<0.001) 6.93 (<0.001) -1.89 (0.06) -5.27 (<0.001)
LC32 - LC321 -0.91 (0.4) -2.55 (0.01) 0.09 (0.93) 2.44 (0.02)

Observed

LC32 - DAF 0.03 (1) -0.6 (0.55) 0.18 (0.85) 1(0.32)
LC32 - HSF 0.15 (0.9) -0.64 (0.52) -0.74 (0.46) 0.81 (0.42)
LC321 - DAF 0.94 (0.4) 1.95 (0.06) 0.09 (0.93) -1.44 (0.16)
LC321 - HSF 1.06 (0.3) 1.9 (0.06) -0.84 (0.41) -1.62 (0.11)
DAF - HSF 0.12 (0.9) -0.05 (0.96) -0.93 (0.36) -0.19 (0.85)
LC32 - Static -2.25 (0.03) -4.91 (<0.001) 6.69 (<0.001) 2.37 (0.03)
Simulated  LC32 - Mobile -1.6 (0.13) -1.58 (0.12) 3.32 (0.004) 1.65 (0.12)
Static - Mobile 3.34 (0.003) 19.23 (<0.001)  -12.02 (<0.001) -36.7 (<0.001)

Home-range size estimations were conducted using 95% MCP and 95% kernel (h =850, cell
grid size = 250 m). The t-values of the differences and the P-values are between parentheses.
Significative differences (p < 0.05) are shown in bold.





